Stempelfedern

Technische Beschreibung

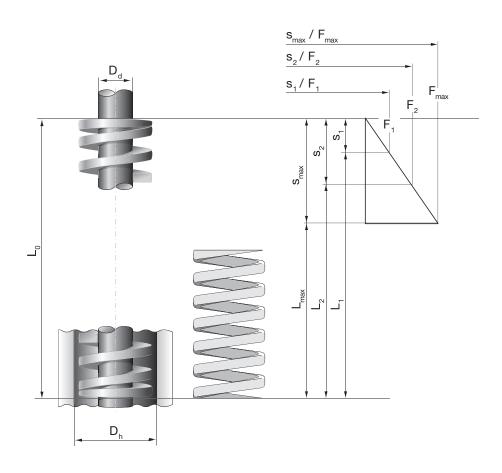
Stempelfedern / Hochleistungsfedern

Konzipiert für den Werkzeugbau ergänzen diese Federn das Tellerfedernprogramm. Bekannt sind sie auch unter der Bezeichnung Werkzeug-, Stanz- oder Systemfedern.

Stempelfedern werden nach anderen Werten, Maßen und nach ISO Normentwurf produziert, daher gelten größere Toleranzen als bei unserem Normfedernprogramm üblich.

Die im Katalog aufgeführten Stempelfedern sind zylindrische Schraubenfedern, die aus ovalen Drähten produziert werden. Konstante Werte weisen die Baugrößen bezüglich des Einbauraumes und der Federkräfte auf.

Drahtdurchmesser, Anzahl der Windungen, Windungssteigung und Blocklänge werden nicht angegeben, da diese Maße einen größeren technisch bedingten Fertigungsausgleich erfordern.


Stempel- / Hochleistungsfedern werden nach dem Einbauraum und den 4 Klassen der Belastung ausgewählt:

leichte Belastung	grün	
mittlere Belastung	blau	
hohe Belastung	rot	
sehr hohe Belastung	gelb	

Belastung bzw. Lebensdauer sind wie folgt definiert:			
F ₁	Belastung für hohe Lebensdauer		
F ₂	Belastung für mittlere Lebensdauer		
F _{max}	maximale Belastung für geringe Lebensdauer		
F _c	Blockbelastung		
V	Vorspannung in N; möglichst hoch wählen		
S	Federweg in mm; möglichst klein wählen		

Stempelfedern Technische Beschreibung

Formel- zeichen	Einheit	Benennung
D _d	mm	Arbeitsdorndurchmesser
D _h	mm	Arbeitshülsendurchmesser
E	N/mm ²	Elastizitätsmodul
F	N	Federkraft
F ₁	N	Federkraft, s ₁ zugeordnet
F ₂	N	Federkraft, s ₂ zugeordnet
F _{max}	N	Federkraft, s _{max} zugeordnet
F _c	N	Federkraft, zugeordnet Blocklänge L_c
L _o	mm	Länge der unbelasteten Feder
L ₁	mm	Federlänge, s ₁ zugeordnet
L ₂	mm	Federlänge, s ₂ zugeordnet
L _{max}	mm	Federlänge, s _{max} zugeordnet
L _c	mm	Federlänge, s _c zugeordnet

Formel- zeichen	Einheit	Benennung
М	g	Masse der Feder
R	N/mm	Federrate
s	mm	Federweg
S ₁	mm	Federweg, F ₁ zugeordnet
S ₂	mm	Federweg, F ₂ zugeordnet
S _{max}	mm	Federweg, F _{max} zugeordnet
S _c	mm	Federweg, zugeordnet Blocklänge L_c
S _h	mm	Hub (Arbeitsweg)